
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Neural Networks and Deep Learning
Brain inspired way to learn from patterns

COURSE: CS60045

1

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

Brain inspired computing

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

• Simple units
• The power is in

the network

Preliminaries

• Deciding the capacity of the model

• Under-fitting, if the capacity is
weak

• Over-fitting, if the capacity is
unnecessarily large

• Neural network offers a generic
model, which offers:

• Structural variants, so as to
scale up / down the capacity

• Various types of activation
functions, which enables the
modeling of various types of
functions.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Neural Networks

A neural network consists of a set of nodes
(neurons/units) connected by links

• Each link has a numeric weight

Each unit has:
• a set of input links from other units,
• a set of output links to other units,
• a current activation level, and
• an activation function to compute the

activation level in the next time step.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

𝒊𝒊𝒊𝒊𝒊𝒊 𝒂𝒂𝒊𝒊

𝒈𝒈

𝒊𝒊𝒊𝒊𝒊𝒊 = �
𝒋𝒋=𝟎𝟎

𝒊𝒊

𝑾𝑾𝒋𝒋,𝒊𝒊𝒂𝒂𝒋𝒋

𝒂𝒂𝒊𝒊 = 𝒈𝒈(𝒊𝒊𝒊𝒊𝒊𝒊)

𝒂𝒂𝟎𝟎 = −𝟏𝟏

𝑾𝑾𝟎𝟎,𝒊𝒊

𝑾𝑾𝒋𝒋,𝒊𝒊𝒂𝒂𝒋𝒋

Bias Weight

𝒂𝒂𝒊𝒊 = 𝒈𝒈(𝒊𝒊𝒊𝒊𝒊𝒊) = 𝒈𝒈 �
𝒋𝒋=𝟎𝟎

𝒊𝒊

𝑾𝑾𝒋𝒋,𝒊𝒊𝒂𝒂𝒋𝒋

Input Links
Input
Function Activation

Function

Output

Perceptron

Studying a perceptron helps us to
understand the limitations in capacity and
the corresponding inability to model certain
types of functions.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

𝒊𝒊𝒊𝒊 = �
𝒋𝒋=𝟎𝟎

𝟐𝟐

𝑾𝑾𝒊𝒊𝒙𝒙𝒊𝒊 𝒂𝒂 = �𝟎𝟎 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 ≤ 𝟎𝟎
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 > 𝟎𝟎

.

𝒊𝒊𝒊𝒊 𝒂𝒂

𝒈𝒈

𝒂𝒂 = 𝒈𝒈(𝒊𝒊𝒊𝒊)
𝒙𝒙𝟎𝟎 = −𝟏𝟏 𝑾𝑾𝟎𝟎

𝑾𝑾𝟏𝟏𝒙𝒙𝟏𝟏

Input
Function Activation

Function

Output𝒙𝒙𝟐𝟐 𝑾𝑾𝟐𝟐

Perceptron

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

𝒊𝒊𝒊𝒊 = 𝒙𝒙𝟏𝟏𝑾𝑾𝟏𝟏 + 𝒙𝒙𝟐𝟐𝑾𝑾𝟐𝟐 −𝑾𝑾𝟎𝟎

𝒂𝒂 = �𝟎𝟎 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 ≤ 𝟎𝟎
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 > 𝟎𝟎

.

𝒊𝒊𝒊𝒊 𝒂𝒂

𝒈𝒈

𝒂𝒂 = 𝒈𝒈(𝒊𝒊𝒊𝒊)
𝒙𝒙𝟎𝟎 = −𝟏𝟏 𝑾𝑾𝟎𝟎

𝑾𝑾𝟏𝟏𝒙𝒙𝟏𝟏

Input
Function Activation

Function

Output𝒙𝒙𝟐𝟐 𝑾𝑾𝟐𝟐

Linear Function:

AND: W1 = 1, W2 = 1, W0 = 1

in = x1 + x2 − 1

OR: W1 = 2, W2 = 2, W0 = 1

in = 2x1 + 2x2 − 1

What about XOR?

Multiple Layers Increase the Capacity

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

The black and white dots are not linearly separable, that

is, no linear function of the following form separates them:

𝒊𝒊𝒊𝒊 = 𝒙𝒙𝟏𝟏𝑾𝑾𝟏𝟏 + 𝒙𝒙𝟐𝟐𝑾𝑾𝟐𝟐 −𝑾𝑾𝟎𝟎

With two layers, it is possible to

model the XOR function.

Supervised Learning by back-propagating errors

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

The basic idea:

• We compute the output error as:

Error = golden output (y) − output of network (a)

• The training error function computed over all training data is:

𝑬𝑬 = 𝟏𝟏
𝟐𝟐
∑𝒊𝒊(𝒚𝒚𝒊𝒊 − 𝒂𝒂𝒊𝒊)𝟐𝟐

• We wish to find values of Wj such that E is minimum over the
training data

• For this purpose we may iteratively do the following:
• Present a training sample to the network
• Compute the error for this output
• Factorize the error in proportion to the contribution of the

nodes and readjust the weights accordingly

Neural Network
Training

input

Golden
output

Adjust weights

Learning in Single Layered Networks
Idea: Optimize the weights so as to minimize error function:

𝑬𝑬 = 𝟏𝟏
𝟐𝟐
𝑬𝑬𝑬𝑬𝑬𝑬𝟐𝟐 = 𝟏𝟏

𝟐𝟐
𝒚𝒚 − 𝒈𝒈 ∑𝒋𝒋=𝟎𝟎𝒊𝒊 𝑾𝑾𝒋𝒋𝒙𝒙𝒋𝒋

𝟐𝟐

We can use gradient descent to reduce the squared error by
calculating the partial derivative of E with respect to each weight.

𝝏𝝏𝑬𝑬
𝝏𝝏𝑾𝑾𝒋𝒋

= 𝑬𝑬𝑬𝑬𝑬𝑬 ×
𝝏𝝏𝑬𝑬𝑬𝑬𝑬𝑬
𝝏𝝏𝑾𝑾𝒋𝒋

= 𝑬𝑬𝑬𝑬𝑬𝑬 ×
𝝏𝝏

𝝏𝝏𝑾𝑾𝒋𝒋
𝒚𝒚 − 𝒈𝒈 �

𝒋𝒋=𝟎𝟎

𝒊𝒊

𝑾𝑾𝒋𝒋𝒙𝒙𝒋𝒋

= −𝐄𝐄𝐄𝐄𝐄𝐄 × 𝒈𝒈𝒈(𝒊𝒊𝒊𝒊) × 𝒙𝒙𝒋𝒋
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

𝑾𝑾𝒋𝒋 ← 𝑾𝑾𝒋𝒋 + 𝜶𝜶 × 𝑬𝑬𝑬𝑬𝑬𝑬 × 𝒈𝒈𝒈(𝒊𝒊𝒊𝒊) × 𝒙𝒙𝒋𝒋

Weight update rule:

where α is the learning rate

We purposefully eliminate a fraction of the
error through the weight adjustment rule,
but not the whole of it. Why?

Multi-Layer Feed-Forward Network
Weight updation rule at the output layer:

𝑾𝑾𝒋𝒋 ← 𝑾𝑾𝒋𝒋 + 𝜶𝜶 × 𝑬𝑬𝑬𝑬𝑬𝑬 × 𝒈𝒈𝒈(𝒊𝒊𝒊𝒊) × 𝒙𝒙𝒋𝒋
(same as single layer)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 10

Oi Output units

Wj,i

aj Hidden units

Wk,j

Ik Input units

In multilayer networks, the hidden layers also contribute to the error at the output.

• So the important question is: How do we revise the hidden layers?

Back-Propagation Learning

• To update the connections between the input units
and the hidden units, we need to define a quantity
analogous to the error term for output nodes

• We do an error back-propagation, defining error as
𝚫𝚫𝒊𝒊 = 𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊 × 𝒈𝒈𝒈(𝒊𝒊𝒊𝒊𝒊𝒊)

• The idea is that a hidden node j is responsible for
some fraction of the error in each of the output
nodes to which it connects

• Thus the ∆i values are divided according to the
strength of the connection between the hidden
node and the output node and are propagated
back to provide the ∆j values for the hidden layer.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 11

• The propagation rule for the ∆ values is
the following:

𝚫𝚫𝒋𝒋 = 𝒈𝒈𝒈(𝒊𝒊𝒊𝒊𝒋𝒋)∑𝒊𝒊𝑾𝑾𝒋𝒋,𝒊𝒊𝚫𝚫𝒊𝒊

• The update rule for the hidden layers is:
𝑾𝑾𝒌𝒌,𝒋𝒋 ← 𝑾𝑾𝒌𝒌,𝒋𝒋 + 𝜶𝜶 × 𝒂𝒂𝒌𝒌 × 𝚫𝚫𝒋𝒋

The mathematics behind the updation rule
The squared error on a single example is defined as:

𝑬𝑬 = 𝟏𝟏
𝟐𝟐
∑𝒊𝒊(𝒚𝒚𝒊𝒊 − 𝒂𝒂𝒊𝒊)𝟐𝟐

where the sum is over the nodes in the output layer. To obtain the gradient with respect to a specific weight Wj,i
in the output layer, we need only expand out the activation ai as all other terms in the summation are unaffected
by Wj,i

𝝏𝝏𝑬𝑬
𝝏𝝏𝑾𝑾𝒋𝒋,𝒊𝒊

= − 𝒚𝒚𝒊𝒊 − 𝒂𝒂𝒊𝒊
𝝏𝝏𝒂𝒂𝒊𝒊
𝝏𝝏𝑾𝑾𝒋𝒋,𝒊𝒊

= − 𝒚𝒚𝒊𝒊 − 𝒂𝒂𝒊𝒊
𝝏𝝏𝒈𝒈 𝒊𝒊𝒊𝒊𝒊𝒊
𝝏𝝏𝑾𝑾𝒋𝒋,𝒊𝒊

= − 𝒚𝒚𝒊𝒊 − 𝒂𝒂𝒊𝒊 𝒈𝒈′ 𝒊𝒊𝒊𝒊𝒊𝒊
𝝏𝝏𝒊𝒊𝒊𝒊𝒊𝒊
𝝏𝝏𝑾𝑾𝒋𝒋,𝒊𝒊

= − 𝒚𝒚𝒊𝒊 − 𝒂𝒂𝒊𝒊 𝒈𝒈′ 𝒊𝒊𝒊𝒊𝒊𝒊
𝝏𝝏

𝝏𝝏𝑾𝑾𝒋𝒋,𝒊𝒊
�
𝒋𝒋

𝑾𝑾𝒋𝒋,𝒊𝒊𝒂𝒂𝒋𝒋

= − 𝒚𝒚𝒊𝒊 − 𝒂𝒂𝒊𝒊 𝒈𝒈′ 𝒊𝒊𝒊𝒊𝒊𝒊 𝒂𝒂𝒋𝒋 = −𝒂𝒂𝒋𝒋𝚫𝚫𝒊𝒊

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

ai

Wj,i

aj

𝑾𝑾𝒋𝒋,𝑖𝑖 ← 𝑾𝑾𝒋𝒋,𝑖𝑖 + 𝜶𝜶 × 𝑎𝑎𝒋𝒋 × ∆𝑖𝑖

The mathematics contd.

𝝏𝝏𝑬𝑬
𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋

= −�
𝒊𝒊

𝒚𝒚𝒊𝒊 −𝒂𝒂𝒊𝒊
𝝏𝝏𝒈𝒈 𝒊𝒊𝒊𝒊𝒊𝒊
𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋

= −�
𝒊𝒊

𝒚𝒚𝒊𝒊 −𝒂𝒂𝒊𝒊 𝒈𝒈′ 𝒊𝒊𝒊𝒊𝒊𝒊
𝝏𝝏𝒊𝒊𝒊𝒊𝒊𝒊
𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋

= −�
𝒊𝒊

𝚫𝚫𝒊𝒊
𝝏𝝏

𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋
�
𝒋𝒋

𝑾𝑾𝒋𝒋,𝒊𝒊𝒂𝒂𝒋𝒋 = −�
𝒊𝒊

𝚫𝚫𝒊𝒊𝑾𝑾𝒋𝒋,𝒊𝒊
𝝏𝝏𝒂𝒂𝒋𝒋
𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋

= −�
𝒊𝒊

𝚫𝚫𝒊𝒊𝑾𝑾𝒋𝒋,𝒊𝒊
𝝏𝝏𝒈𝒈(𝒊𝒊𝒊𝒊𝒋𝒋)
𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋

= −�
𝒊𝒊

𝚫𝚫𝒊𝒊𝑾𝑾𝒋𝒋,𝒊𝒊𝒈𝒈′ 𝒊𝒊𝒊𝒊𝒋𝒋
𝝏𝝏𝒊𝒊𝒊𝒊𝒋𝒋
𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋

= −�
𝒊𝒊

𝚫𝚫𝒊𝒊𝑾𝑾𝒋𝒋,𝒊𝒊𝒈𝒈′ 𝒊𝒊𝒊𝒊𝒋𝒋
𝝏𝝏

𝝏𝝏𝑾𝑾𝒌𝒌,𝒋𝒋
�
𝒌𝒌

𝑾𝑾𝒌𝒌,𝒋𝒋𝒂𝒂𝒌𝒌

= −�
𝒊𝒊

𝚫𝚫𝒊𝒊𝑾𝑾𝒋𝒋,𝒊𝒊𝒈𝒈′ 𝒊𝒊𝒊𝒊𝒋𝒋 𝒂𝒂𝒌𝒌 = −𝒂𝒂𝒌𝒌𝚫𝚫𝒋𝒋

ai

Wj,i

aj

Wk,j

ak
𝑾𝑾𝒌𝒌,𝒋𝒋 ← 𝑾𝑾𝒌𝒌,𝒋𝒋 + 𝜶𝜶 × 𝒂𝒂𝒌𝒌 × 𝚫𝚫𝒋𝒋

Problems with this Learning

• The weight updation rules define a single step of
gradient descent

• Gradient descent may reach a local minima

• The minimum training error reached at the end
of training is not the best

• The final network is not explainable. We do not know
what the network has learned.

• For a single layer network, the error can be
explained in terms of the inputs and the weights

• In a multi-layer network, the hidden layers do
not make any sense to the end user

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 14

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 15

Convolutional and Recurrent
Neural Networks

• Convolution is useful for learning artifacts that
have a small locality of reference

• Recurrence is useful for learning sequences

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 16

The Convolution Operation

Suppose we are tracking the location of a spaceship with a laser sensor.

• Our laser sensor produces a single output x(t), the position of the spaceship at time t
• Suppose that our laser sensor is somewhat noisy, and therefore we wish to take the average of

multiple measurements.
• More recent measurements have more weight, so we need a weighting function w(a), which

returns the weight of measurement taken at the past time, a.

𝒔𝒔 𝒕𝒕 = �𝒙𝒙 𝒂𝒂 𝒘𝒘 𝒕𝒕 − 𝒂𝒂 𝒅𝒅𝒂𝒂 = (𝒙𝒙 ∗ 𝒘𝒘)(𝒕𝒕)

This operation is called convolution. The first argument, x(), is called the input, and the
second argument, w(), is called the kernel.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 17

Discrete Convolution

If we assume that x and w are defined only on integer t, we can define discrete convolution:

𝒔𝒔 𝒕𝒕 = 𝒙𝒙 ∗ 𝒘𝒘 𝒕𝒕 = �
𝒂𝒂=−∞

∞

𝒙𝒙 𝒂𝒂 𝒘𝒘(𝒕𝒕 − 𝒂𝒂)

Convolution can also be defined over more than one axis at a time. For example, if we use a two dimensional
image I as our input, we may want to use a two dimensional kernel:

𝒔𝒔 𝒊𝒊, 𝒋𝒋 = 𝑰𝑰 ∗ 𝑲𝑲 𝒊𝒊, 𝒋𝒋 = �
𝒎𝒎

�
𝒊𝒊

𝑰𝑰 𝒎𝒎,𝒊𝒊 𝑲𝑲(𝒊𝒊 − 𝒎𝒎, 𝒋𝒋 − 𝒊𝒊)

Convolution is commutative, that is, we can also write (by replacing m by i — m and n by j — n):

𝒔𝒔 𝒊𝒊, 𝒋𝒋 = 𝑲𝑲 ∗ 𝑰𝑰 𝒊𝒊, 𝒋𝒋 = �
𝒎𝒎

�
𝒊𝒊

𝑰𝑰 𝒊𝒊 −𝒎𝒎, 𝒋𝒋 − 𝒊𝒊 𝑲𝑲(𝒎𝒎,𝒊𝒊)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 18

Convolution Networks help us to learn image filters

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 19

Machine learning can be used to learn these filters.
• The weights of a convolutional network are learned
• How does the network look like?

If kernel width is small, the network will be sparse

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 20

Convolution and Pooling

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 21

Set of three learned filters

A pooling function replaces the output
of the net at a certain location with a
summary statistic of the nearby
outputs

The output of pooling unit is the same
in both cases. Hence both the 5s are
recognized.

Sequence Modeling: Recurrent and Recursive Networks

• Recurrent Neural Networks (RNNs) are a family of neural networks for processing sequential data

• Recurrent networks can scale to much longer sequences than would be practical for networks without
sequence-based specialization

• Most recurrent networks can also process sequences of variable length
• The key idea behind RNNs is parameter sharing

• For example, in a dynamical system, the parameters of the transfer function do not change with time
• Therefore we can use the same part of the neural network over and over again

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 22

Unfolding Computation

Consider a dynamical system:

𝒔𝒔(𝒕𝒕) = 𝒊𝒊 𝒔𝒔 𝒕𝒕−𝟏𝟏 ;𝜽𝜽

where s(t) is the state at time t and θ is the set of parameters of f

• The state after a finite number of steps can be obtained by applying the definition recursively. For example,
after 3 steps:

𝒔𝒔(𝟑𝟑) = 𝒊𝒊 𝒔𝒔 𝟐𝟐 ;𝜽𝜽 = 𝒊𝒊 𝒊𝒊 𝒔𝒔 𝟏𝟏 ;𝜽𝜽 ;𝜽𝜽

• For a dynamical system driven by an external input signal x(t) :
𝒔𝒔(𝒕𝒕) = 𝒊𝒊 𝒔𝒔 𝒕𝒕−𝟏𝟏 ,𝒙𝒙 𝒕𝒕 ;𝜽𝜽

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 23

Unfolding computation and Recurrent Network

• Regardless of the sequence length, the learned model always has the same input size, because it is specified
in terms of transition from one state to another state, rather than specified in terms of a variable-length history
of states

• It is possible to use the same transition function f with the same parameters at each step

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 24

h

x

h(t−1)

x(t−1)

h(t)

x(t)

h(t+1)

x(t+1)

f f f
unfold

f

𝒉𝒉(𝒕𝒕) = 𝒊𝒊 𝒉𝒉 𝒕𝒕−𝟏𝟏 ,𝒙𝒙 𝒕𝒕 ;𝜽𝜽

Useful topologies of RNNs

• RNNs that produce an output at each time step and have recurrent connections between hidden units

• RNNs that produce an output at each time step and have recurrent connections only from the output at one
time step to the hidden units at the next time step

• RNNs with recurrent connections between hidden units, that read an entire sequence and then produce a
single output

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 25

Figure from Deep Learning,
Goodfellow, Bengio and Courville

RNN with hidden-hidden feedback

RNN with hidden-hidden feedback is
universal. Any function computable by
a Turing machine can be computed by
such a RNN of finite size (weights can
have infinite precision).

Figure from Deep Learning,
Goodfellow, Bengio and Courville

RNN with output-hidden feedback

Less powerful than the hidden-hidden
feedback model.
Advantage: Each time step can be trained
in isolation (why?)

Figure from Deep Learning,
Goodfellow, Bengio and Courville

RNN with output only at the end

Can be used to summarize a sequence
and produce a fixed-size representation to
be used as an input for further processing

Boltzmann Machines
A Boltzmann machine is a network of units with an energy defined for the overall network. Its units
produce binary results. The global energy, E, is:

𝑬𝑬 = − ∑𝒊𝒊<𝒋𝒋𝒘𝒘𝒊𝒊𝒋𝒋𝒔𝒔𝒊𝒊𝒔𝒔𝒋𝒋 + ∑𝒊𝒊 𝜽𝜽𝒊𝒊𝒔𝒔𝒊𝒊

where:
• wij is the connection strength between unit j and unit i.
• si is the state, si∈ { 0,1 }, of unit i
• 𝜽𝜽𝒊𝒊 is the bias of unit i in the global energy function. (−𝜽𝜽𝒊𝒊 is the activation threshold for the unit)

∆𝑬𝑬𝒊𝒊 = �
𝒋𝒋>𝒊𝒊

𝒘𝒘𝒊𝒊𝒋𝒋𝒔𝒔𝒋𝒋 + �
𝒋𝒋<𝒊𝒊

𝒘𝒘𝒋𝒋𝒊𝒊𝒔𝒔𝒋𝒋 + 𝜽𝜽𝒊𝒊

• From this we obtain (the scalar T is called the temperature):

𝒑𝒑𝒊𝒊=𝑶𝑶𝒊𝒊 =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆𝒙𝒙𝒑𝒑 −∆𝑬𝑬𝒊𝒊𝑻𝑻
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 29

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 30

Source: DARPA

The ML problem in regression

What is the function 𝒊𝒊 . ?

Solution: This is where the different ML methods come in
• Linear model: 𝒊𝒊 𝒙𝒙 = 𝒘𝒘𝑻𝑻𝒙𝒙

• Linear basis functions: 𝒊𝒊 𝒙𝒙 = 𝒘𝒘𝑻𝑻𝝓𝝓(𝒙𝒙)
• Where 𝝓𝝓 𝒙𝒙 = [𝝓𝝓𝟎𝟎 𝒙𝒙 𝝓𝝓𝟏𝟏 𝒙𝒙 …𝝓𝝓𝑳𝑳(𝒙𝒙)]𝑻𝑻 and 𝝓𝝓𝒍𝒍(𝒙𝒙) is the basis function.
• Choices for the basis function:

• Powers of 𝒙𝒙: 𝝓𝝓𝒍𝒍 𝒙𝒙 = 𝒙𝒙𝒍𝒍

• Gaussian / Sigmoidal / Fourier / …
• Neural networks
• …

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 31

Classification

Given training data set with:

• Input values: 𝒙𝒙𝒊𝒊 = [𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 … 𝒙𝒙𝑴𝑴]𝑻𝑻 for 𝒊𝒊 = 𝟏𝟏…𝑵𝑵.

• Output class labels, for example:
• 0/1 or −1/+1 for binary classification problems
• 1 … K for multi-class classification problems
• 1-of-K coding scheme:

𝐲𝐲 = [𝟎𝟎 …𝟎𝟎 𝟏𝟏 𝟎𝟎 …𝟎𝟎]𝑻𝑻

where, if 𝒙𝒙𝒊𝒊 belongs to class k, then the kth bit is 1 and all others are 0.

Objective: Predict the output class for new, unknown inputs �𝒙𝒙𝒎𝒎.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 32

Classification strategies

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 33

Linear discriminants
(2-class classifiers)

Combining 2-class classifiers to obtain multi-class classifiers is a bad idea !!

K-class discriminant

	Neural Networks and Deep Learning�Brain inspired way to learn from patterns
	Brain inspired computing
	Preliminaries
	Neural Networks
	Perceptron
	Perceptron
	Multiple Layers Increase the Capacity
	Supervised Learning by back-propagating errors
	Learning in Single Layered Networks
	Multi-Layer Feed-Forward Network
	Back-Propagation Learning
	The mathematics behind the updation rule
	The mathematics contd.
	Problems with this Learning
	Convolutional and Recurrent Neural Networks
	Slide Number 16
	The Convolution Operation
	Discrete Convolution
	Convolution Networks help us to learn image filters
	If kernel width is small, the network will be sparse
	Convolution and Pooling
	Sequence Modeling: Recurrent and Recursive Networks
	Unfolding Computation
	Unfolding computation and Recurrent Network
	Useful topologies of RNNs
	RNN with hidden-hidden feedback
	RNN with output-hidden feedback
	RNN with output only at the end
	Boltzmann Machines
	Slide Number 30
	The ML problem in regression
	Classification
	Classification strategies

